2024
DOI: 10.1145/3663652.3663654
|View full text |Cite
|
Sign up to set email alerts
|

Deep Convolutional Neural Network Compression based on the Intrinsic Dimension of the Training Data

Abir Mohammad Hadi,
Kwanghee Won

Abstract: Selecting the optimal deep learning architecture for a particular task and dataset remains an ongoing challenge. Typically, this decision-making process involves exhaustive searches for neural network architectures or multi-phase optimization, which includes initial training, compression or pruning, and fine-tuning steps. In this study, we introduce an approach utilizing a deep reinforcement learning-based agent to dynamically compress a deep convolutional neural network throughout its training process. We int… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?