We conducted a detailed investigation of seismic activity from January 2011 to February 2013 along the Nankai trough off the Kii Peninsula, central Japan, by using data obtained from the DONET ocean-bottom observation network. The hypocenters are mostly within the subducting Philippine Sea (PHS) plate, although a few are along the plate boundary or in the sedimentary wedge below the Kumano forearc basin. The seismic activity can be separated into events above and below 20 km depth, which corresponds approximately to the Moho. The hypocenter distributions are distinctly different for these groups. The seismic activity in the oceanic crust can be further separated into three clusters. Most of the seismic activity recorded in our data represents aftershocks of the 2004 off the Kii Peninsula earthquakes (M JMA = 7.1, 7.4, and 6.5), which occurred in the PHS plate. The hypocenter distribution in the oceanic crust correlates well with the location of the Paleo-Zenisu ridge, which is formed by a chain of seamounts that is subducting beneath the forearc basin. The hypocenters in the uppermost mantle are aligned on a plane dipping to the southeast, consistent with the existence of a thrust fault cutting through the lithosphere of the oceanic plate. The focal mechanisms of the earthquakes show that the axis of compressive stress in the PHS plate is oriented N-S, almost perpendicular to the direction of plate convergence, indicating a complex tectonic regime in this region. These results suggest that intraplate shortening may be occurring in the subducting oceanic plate.