Abstract:In this article we introduce the differentiable reinforcement learning framework. It is based on the fact that in many reinforcement learning applications, the environment reward and transition functions are not black boxes but known differentiable functions. Incorporating deep learning in this framework we find more accurate and stable solutions than more generic actor critic algorithms. We apply this deep differentiable reinforcement learning (DDRL) algorithm to the problem of optimal trading strategies in v… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.