Ensembling neural networks is an effective way to increase accuracy, and can often match the performance of larger models. This observation poses a natural question: given the choice between a deep ensemble and a single neural network with similar accuracy, is one preferable over the other? Recent work suggests that deep ensembles may offer benefits beyond predictive power: namely, uncertainty quantification and robustness to dataset shift. In this work, we demonstrate limitations to these purported benefits, and show that a single (but larger) neural network can replicate these qualities. First, we show that ensemble diversity, by any metric, does not meaningfully contribute to an ensemble's ability to detect out-of-distribution (OOD) data, and that one can estimate ensemble diversity by measuring the relative improvement of a single larger model. Second, we show that the OOD performance afforded by ensembles is strongly determined by their in-distribution (InD) performance, and-in this sense-is not indicative of any "effective robustness." While deep ensembles are a practical way to achieve performance improvement (in agreement with prior work), our results show that they may be a tool of convenience rather than a fundamentally better model class.