Abstract:We investigate the design of recommendation systems that can efficiently learn from sparse and delayed feedback. Deep Exploration can play an important role in such contexts, enabling a recommendation system to much more quickly assess a user's needs and personalize service. We design an algorithm based on Thompson Sampling that carries out Deep Exploration. We demonstrate through simulations that the algorithm can substantially amplify the rate of positive feedback relative to common recommendation system des… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.