Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The value of computer-assisted image analysis has been shown in several studies. The performance of tools with artificial intelligence (AI), such as GestaltMatcher, is improved with the size and diversity of the training set, but properly labeled training data is currently the biggest bottleneck in developing next-generation phenotyping (NGP) applications. Therefore, we developed GestaltMatcher Database (GMDB) - a database for machine-readable medical image data that complies with the FAIR principles and improves the openness and accessibility of scientific findings in Medical Genetics. An entry in GMDB consists of a medical image such as a portrait, X-ray, or fundoscopy, and machine-readable meta information such as a clinical feature encoded in HPO terminology or a disease-causing mutation reported in HGVS format. In the beginning, data was mainly collected by curators gathering images from the literature. Currently, clinicians and individuals recruited from patient support groups provide their previously unpublished data. For this patient-centered approach, we developed a digital consent form. GMDB is a modern publication medium for case reports that complements preprints, e.g., on medRxiv. To enable inter-cohort comparisons, we implemented a research feature in GMDB that computes the pairwise syndromic similarity between hand-picked cases. Through a community-driven effort, we compiled an image collection of over 7,533 cases with 792 disorders in GMDB. Most of the data was collected from 2,058 publications. In addition, about 1,018 frontal images of 498 previously unpublished cases were obtained. The web interface enables gene- and phenotype-centered queries or infinite scrolls in the gallery. Digital consent has led to increasing adoption of the approach by patients. The research app within GMDB was used to generate syndromic similarity matrices to characterize two novel phenotypes (CSNK2B, PSMC3). GMDB is the first FAIR database for NGP, where data are findable, accessible, interoperable, and reusable. It is a repository for medical images that cannot be included in medRxiv. That means GMDB connects clinicians with a shared interest in particular phenotypes and improves the performance of AI.
The value of computer-assisted image analysis has been shown in several studies. The performance of tools with artificial intelligence (AI), such as GestaltMatcher, is improved with the size and diversity of the training set, but properly labeled training data is currently the biggest bottleneck in developing next-generation phenotyping (NGP) applications. Therefore, we developed GestaltMatcher Database (GMDB) - a database for machine-readable medical image data that complies with the FAIR principles and improves the openness and accessibility of scientific findings in Medical Genetics. An entry in GMDB consists of a medical image such as a portrait, X-ray, or fundoscopy, and machine-readable meta information such as a clinical feature encoded in HPO terminology or a disease-causing mutation reported in HGVS format. In the beginning, data was mainly collected by curators gathering images from the literature. Currently, clinicians and individuals recruited from patient support groups provide their previously unpublished data. For this patient-centered approach, we developed a digital consent form. GMDB is a modern publication medium for case reports that complements preprints, e.g., on medRxiv. To enable inter-cohort comparisons, we implemented a research feature in GMDB that computes the pairwise syndromic similarity between hand-picked cases. Through a community-driven effort, we compiled an image collection of over 7,533 cases with 792 disorders in GMDB. Most of the data was collected from 2,058 publications. In addition, about 1,018 frontal images of 498 previously unpublished cases were obtained. The web interface enables gene- and phenotype-centered queries or infinite scrolls in the gallery. Digital consent has led to increasing adoption of the approach by patients. The research app within GMDB was used to generate syndromic similarity matrices to characterize two novel phenotypes (CSNK2B, PSMC3). GMDB is the first FAIR database for NGP, where data are findable, accessible, interoperable, and reusable. It is a repository for medical images that cannot be included in medRxiv. That means GMDB connects clinicians with a shared interest in particular phenotypes and improves the performance of AI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.