“…GoogleNet (Inception) developed the concept of inception modules, which use parallel convolutional operations utilizing various kernel sizes for capturing multi-scale features efficiently. TL -Inception (Mahmood et al, 2021) Malathi and Latha, 2023;Sakthivel et al, 2022b;Samee et al, 2022b,a;Singh et al, 2023;Ahmad et al, 2023;Arora et al, 2020;Hekal et al, 2021) TL -VGG Net (Mahmood et al, 2021), (Jones et al, 2023;Pramanik et al, 2023;Sajid et al, 2023;Salama et al, 2020;Samee et al, 2022b,a;Yu et al, 2023a;Arora et al, 2020;Boudouh and Bouakkaz, 2023c;Chakravarthy et al, 2023b;Nemade et al, 2023a;Rani et al, 2023) TL -DenseNet (Mahmood et al, 2021), (Kumbhare et al, 2023;Zhang et al, 2020;Boudouh and Bouakkaz, 2023c;Chakravarthy et al, 2023b;Saber et al, 2023;Malibari et al, 2022) The Inception architecture has gone through several iterations. Inception-v2, also known as BN-Inception, added batch normalization to accelerate training.…”