Compressive sensing (CS) is a mathematically elegant tool for reducing the sampling rate, potentially bringing contextawareness to a wider range of devices. Nevertheless, practical issues with the sampling and reconstruction algorithms prevent further proliferation of CS in real world domains, especially among heterogeneous ubiquitous devices. Deep learning (DL) naturally complements CS for adapting the sampling matrix, reconstructing the signal, and learning form the compressed samples. While the CS-DL integration has received substantial research interest recently, it has not yet been thoroughly surveyed, nor has the light been shed on practical issues towards bringing the CS-DL to real world implementations in the ubicomp domain. In this paper we identify main possible ways in which CS and DL can interplay, extract key ideas for making CS-DL efficient, identify major trends in CS-DL research space, and derive guidelines for future evolution of CS-DL within the ubicomp domain. CCS Concepts: • Computer systems organization → Sensor networks; • Human-centered computing → Ubiquitous computing; • Computing methodologies → Neural networks.