The recent advances in instance-level detection tasks lay strong foundation for genuine comprehension of the visual scenes. However, the ability to fully comprehend a social scene is still in its preliminary stage. In this work, we focus on detecting human-object interactions (HOIs) in social scene images, which is demanding in terms of research and increasingly useful for practical applications. To undertake social tasks interacting with objects, humans direct their attention and move their body based on their intention. Based on this observation, we provide an unique computational perspective to explore human intention in HOI detection. Specifically, the proposed human intentiondriven HOI detection (iHOI) framework models human pose with the relative distances from body joints to the object instances. It also utilizes human gaze to guide the attended contextual regions in a weakly-supervised setting. In addition, we propose a hard negative sampling strategy to address the problem of misgrouping. We perform extensive experiments on two benchmark datasets, namely V-COCO and HICO-DET, and show that iHOI outperforms the existing approaches. The efficacy of each proposed component has also been validated.