2024
DOI: 10.7250/eb-2024-0006
|View full text |Cite
|
Sign up to set email alerts
|

Deep Learning Algorithm Forecasting the Unemployment Rates in the Central European Countries

Szilárd Madaras

Abstract: The aim of this paper is to forecast the monthly unemployment rate’s time series using deep learning algorithms. Based on data from five Central European countries, we tested the forecasting performance of the ‘conventional’ Box–Jenkins methodology in comparison with three deep learning models: the CNN (Convolutional Neural Network), the MLP (Multilayer Perceptron) and the random forest algorithm. The MAPE, MAE, RRMSE, and MSE error tests were used for testing the forecasting results. In our results, the ARIMA… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 43 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?