Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BACKGROUND Liver transplantation (LT) is a life-saving intervention for patients with end-stage liver disease. However, the equitable allocation of scarce donor organs remains a formidable challenge. Prognostic tools are pivotal in identifying the most suitable transplant candidates. Traditionally, scoring systems like the model for end-stage liver disease have been instrumental in this process. Nevertheless, the landscape of prognostication is undergoing a transformation with the integration of machine learning (ML) and artificial intelligence models. AIM To assess the utility of ML models in prognostication for LT, comparing their performance and reliability to established traditional scoring systems. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, we conducted a thorough and standardized literature search using the PubMed/MEDLINE database. Our search imposed no restrictions on publication year, age, or gender. Exclusion criteria encompassed non-English studies, review articles, case reports, conference papers, studies with missing data, or those exhibiting evident methodological flaws. RESULTS Our search yielded a total of 64 articles, with 23 meeting the inclusion criteria. Among the selected studies, 60.8% originated from the United States and China combined. Only one pediatric study met the criteria. Notably, 91% of the studies were published within the past five years. ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values (ranging from 0.6 to 1) across all studies, surpassing the performance of traditional scoring systems. Random forest exhibited superior predictive capabilities for 90-d mortality following LT, sepsis, and acute kidney injury (AKI). In contrast, gradient boosting excelled in predicting the risk of graft-versus-host disease, pneumonia, and AKI. CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT, marking a significant evolution in the field of prognostication.
BACKGROUND Liver transplantation (LT) is a life-saving intervention for patients with end-stage liver disease. However, the equitable allocation of scarce donor organs remains a formidable challenge. Prognostic tools are pivotal in identifying the most suitable transplant candidates. Traditionally, scoring systems like the model for end-stage liver disease have been instrumental in this process. Nevertheless, the landscape of prognostication is undergoing a transformation with the integration of machine learning (ML) and artificial intelligence models. AIM To assess the utility of ML models in prognostication for LT, comparing their performance and reliability to established traditional scoring systems. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, we conducted a thorough and standardized literature search using the PubMed/MEDLINE database. Our search imposed no restrictions on publication year, age, or gender. Exclusion criteria encompassed non-English studies, review articles, case reports, conference papers, studies with missing data, or those exhibiting evident methodological flaws. RESULTS Our search yielded a total of 64 articles, with 23 meeting the inclusion criteria. Among the selected studies, 60.8% originated from the United States and China combined. Only one pediatric study met the criteria. Notably, 91% of the studies were published within the past five years. ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values (ranging from 0.6 to 1) across all studies, surpassing the performance of traditional scoring systems. Random forest exhibited superior predictive capabilities for 90-d mortality following LT, sepsis, and acute kidney injury (AKI). In contrast, gradient boosting excelled in predicting the risk of graft-versus-host disease, pneumonia, and AKI. CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT, marking a significant evolution in the field of prognostication.
BACKGROUND Liver transplant (LT) patients have become older and sicker. The rate of post-LT major adverse cardiovascular events (MACE) has increased, and this in turn raises 30-d post-LT mortality. Noninvasive cardiac stress testing loses accuracy when applied to pre-LT cirrhotic patients. AIM To assess the feasibility and accuracy of a machine learning model used to predict post-LT MACE in a regional cohort. METHODS This retrospective cohort study involved 575 LT patients from a Southern Brazilian academic center. We developed a predictive model for post-LT MACE (defined as a composite outcome of stroke, new-onset heart failure, severe arrhythmia, and myocardial infarction) using the extreme gradient boosting (XGBoost) machine learning model. We addressed missing data (below 20%) for relevant variables using the k-nearest neighbor imputation method, calculating the mean from the ten nearest neighbors for each case. The modeling dataset included 83 features, encompassing patient and laboratory data, cirrhosis complications, and pre-LT cardiac assessments. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC). We also employed Shapley additive explanations (SHAP) to interpret feature impacts. The dataset was split into training (75%) and testing (25%) sets. Calibration was evaluated using the Brier score. We followed Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines for reporting. Scikit-learn and SHAP in Python 3 were used for all analyses. The supplementary material includes code for model development and a user-friendly online MACE prediction calculator. RESULTS Of the 537 included patients, 23 (4.46%) developed in-hospital MACE, with a mean age at transplantation of 52.9 years. The majority, 66.1%, were male. The XGBoost model achieved an impressive AUROC of 0.89 during the training stage. This model exhibited accuracy, precision, recall, and F1-score values of 0.84, 0.85, 0.80, and 0.79, respectively. Calibration, as assessed by the Brier score, indicated excellent model calibration with a score of 0.07. Furthermore, SHAP values highlighted the significance of certain variables in predicting postoperative MACE, with negative noninvasive cardiac stress testing, use of nonselective beta-blockers, direct bilirubin levels, blood type O, and dynamic alterations on myocardial perfusion scintigraphy being the most influential factors at the cohort-wide level. These results highlight the predictive capability of our XGBoost model in assessing the risk of post-LT MACE, making it a valuable tool for clinical practice. CONCLUSION Our study successfully assessed the feasibility and accuracy of the XGBoost machine learning model in predicting post-LT MACE, using both cardiovascular and hepatic variables. The model demonstrated impressive performance, aligning with literature findings, and exhibited excellent calibration. Notably, our cautious approach to prevent overfitting and data leakage suggests the stability of results when applied to prospective data, reinforcing the model’s value as a reliable tool for predicting post-LT MACE in clinical practice.
BACKGROUND End stage liver disease (ESLD) represents a growing health concern characterized by elevated morbidity and mortality, particularly among individual ineligible for liver transplantation. The demand for palliative care (PC) is pronounced in patients grappling with ESLD and acute on chronic liver failure (ACLF). Unfortunately, the historical underutilization of PC in ESLD patients, despite their substantial needs and those of their family caregivers, underscores the imperative of seamlessly integrating PC principles into routine healthcare practices across the entire disease spectrum. AIM To comprehensively investigate the evidence surrounding the benefits of incorporating PC into the comprehensive care plan for individuals confronting ESLD and/or ACLF. METHODS A systematic search in the Medline (PubMed) database was performed using a predetermined search command, encompassing studies published in English without any restrictions on the publication date. Subsequently, the retrieved studies were manually examined. Simple descriptive analyses were employed to summarize the results. RESULTS The search strategies yielded 721 references. Following the final analysis, 32 full-length references met the inclusion criteria and were consequently incorporated into the study. Meticulous data extraction from these 32 studies was undertaken, leading to the execution of a comprehensive narrative systematic review. The review found that PC provides significant benefits, reducing symptom burden, depressive symptoms, readmission rates, and hospital stays. Yet, barriers like the appeal of transplants and misconceptions about PC hinder optimal utilization. Integrating PC early, upon the diagnosis of ESLD and ACLF, regardless of transplant eligibility and availability, improves the quality of life for these patients. CONCLUSION Despite the substantial suffering and poor prognosis associated with ESLD and ACLF, where liver transplantation stands as the only curative treatment, albeit largely inaccessible, PC services have been overtly provided too late in the course of the illness. A comprehensive understanding of PC's pivotal role in treating ESLD and ACLF is crucial for overcoming these barriers, involving healthcare providers, patients, and caregivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.