2021
DOI: 10.21203/rs.3.rs-953170/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Deep Learning Approach for Chemistry and Processing History Prediction from Materials Microstructure: Application to Spinodal Decomposition

Abstract: Finding the chemical composition and processing history from a microstructure morphology for heterogeneous materials is desired in many applications. While the simulation methods based on physical concepts such as the phase-field method can predict the spatio-temporal evolution of the materials’ microstructure, they are not efficient techniques for predicting processing and chemistry if a specific morphology is desired. In this study, we propose a framework based on a deep learning approach that enables us to … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 3 publications
0
0
0
Order By: Relevance