2021
DOI: 10.1093/mnras/stab1518
|View full text |Cite
|
Sign up to set email alerts
|

Deep learning approach for identification of H ii regions during reionization in 21-cm observations

Abstract: The upcoming Square Kilometre Array (SKA-Low) will map the distribution of neutral hydrogen during reionization and produce a tremendous amount of 3D tomographic data. These images cubes will be subject to instrumental limitations, such as noise and limited resolution. Here we present SegU-Net, a stable and reliable method for identifying neutral and ionized regions in these images. SegU-Net is a U-Net architecture based convolutional neural network (CNN) for image segmentation. It is capable of segmenting our… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
18
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 31 publications
(18 citation statements)
references
References 86 publications
0
18
0
Order By: Relevance
“…They can be related to several other quantities that have been used to study reionization. First of all, the Betti numbers 𝛽 𝑖 (𝛼) for 𝑖 ∈ {0, 1, 2} count the number of features alive as a function of 𝛼 (Elbers 2017;Elbers & van de Weygaert 2019;Kapahtia et al 2018Kapahtia et al , 2019Kapahtia et al , 2021Bianco et al 2021) and are therefore an 'integral' of the persistence diagrams. The commonly used Euler characteristic (Lee et al 2008;Friedrich et al 2011;Hong et al 2014) is an alternating sum of Betti numbers, 𝜒 = 𝛽 0 − 𝛽 1 + 𝛽 2 , and one of the Minkowski functionals (Gleser et al 2006;Yoshiura et al 2016;Kapahtia et al 2018;Bag et al 2018;Chen et al 2019).…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…They can be related to several other quantities that have been used to study reionization. First of all, the Betti numbers 𝛽 𝑖 (𝛼) for 𝑖 ∈ {0, 1, 2} count the number of features alive as a function of 𝛼 (Elbers 2017;Elbers & van de Weygaert 2019;Kapahtia et al 2018Kapahtia et al , 2019Kapahtia et al , 2021Bianco et al 2021) and are therefore an 'integral' of the persistence diagrams. The commonly used Euler characteristic (Lee et al 2008;Friedrich et al 2011;Hong et al 2014) is an alternating sum of Betti numbers, 𝜒 = 𝛽 0 − 𝛽 1 + 𝛽 2 , and one of the Minkowski functionals (Gleser et al 2006;Yoshiura et al 2016;Kapahtia et al 2018;Bag et al 2018;Chen et al 2019).…”
Section: Discussionmentioning
confidence: 99%
“…Besides our earlier work (Elbers 2017, Paper I), Betti numbers have been used in the context of reionization by Kapahtia et al (2018Kapahtia et al ( , 2019Kapahtia et al ( , 2021; and Bianco et al (2021). Among these, the work of is most closely related to our own, while Kapahtia et al (2018Kapahtia et al ( , 2019Kapahtia et al ( , 2021 analyse two-dimensional temperature maps.…”
Section: Persistent Homologymentioning
confidence: 99%
“…These include the one-point statistics of the brightness temperature (Watkinson & Pritchard 2014;Shimabukuro et al 2015;Kubota et al 2016;Banet et al 2021;Gorce et al 2021), the morphological and/or topological features of the 21-cm signal (e.g. Yoshiura et al 2017;Bag et al 2019;Chen et al 2019;Elbers & van de Weygaert 2019;Kapahtia et al 2019;Gazagnes et al 2021;Kapahtia et al 2021) and the distribution of the sizes of ionised regions (Kakiichi et al 2017;Giri et al 2018aGiri et al ,b, 2019bBianco et al 2021). Alternatively, convolutional neural networks (CNNs) have been considered which are trained to be able to extract 2D or 3D features from images of the cosmic 21-cm signal and used to extract astrophysical information from mock observations (e.g.…”
Section: Introductionmentioning
confidence: 99%
“…It is also sensitive to the non-Gaussian information in the signal. While instrumental limitations, starting with the increasing thermal noise at higher angular resolution (e.g., Mellema et al 2013), will affect the process, methods for obtaining the bubble size distribution from tomographic observations have been explored (Giri et al 2018;Bianco et al 2021). Semi-numerical, or even numerical simulations, could then be used to perform parameter inference studies based on this quantity.…”
Section: Introductionmentioning
confidence: 99%