Deep Learning Approach for Runoff Prediction: Evaluating the Long-Short-Term Memory Neural Network Architectures for Capturing Extreme Discharge Events in the Ouergha Basin, Morocco
Nourelhouda Karmouda,
Tarik Bouramtane,
Mounia TAHIRI
et al.
Abstract:Rainfall-runoff modeling plays a crucial role in achieving efficient water resource management and flood forecasting, particularly in the context of increasing intensity and frequency of extreme meteorological events induced by climate change. Therefore, the aim of this research is to assess the accuracy of the Long-Short-Term Memory (LSTM) neural networks and the impact of its architecture in predicting runoff, with a particular focus on capturing extreme hydrological discharges in the Ouergha basin; a Morocc… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.