2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T) 2021
DOI: 10.1109/picst54195.2021.9772235
|View full text |Cite
|
Sign up to set email alerts
|

Deep Learning Approach for Short-Term Forecasting Trend Movement of Stock Indeces

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
0
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 24 publications
0
0
0
1
Order By: Relevance
“…He found that among these four algorithms, GRU performed the best with an accuracy of 89.0%. Derbentsev et al (Derbentsev et al, 2020) also explored the performance of four ML algorithms (Logistic Regression, Support Vector Machine, Fullyconnected NN, and CNN) for SA on IMDb dataset. They used two pre-trained word embeddings GloVe and Word2vec with different dimensions (100 and 300) as well as TF-IDF representation.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…He found that among these four algorithms, GRU performed the best with an accuracy of 89.0%. Derbentsev et al (Derbentsev et al, 2020) also explored the performance of four ML algorithms (Logistic Regression, Support Vector Machine, Fullyconnected NN, and CNN) for SA on IMDb dataset. They used two pre-trained word embeddings GloVe and Word2vec with different dimensions (100 and 300) as well as TF-IDF representation.…”
Section: Related Workmentioning
confidence: 99%
“…Therefore, the combination of convolutional and recurrent layers in the model turns out to be effective in many applied problem such as simulation of various natural processes, image processing, time series forecasting, and different NLP tasks (Chen and Wang, 2018;Derbentsev et al, 2021;Islam et al, 2020;Khan et al, 2022;Rasool et al, 2021;Shang et al, 2020).…”
Section: Cnn+lstm Modelmentioning
confidence: 99%
“…Thus, our bibliometric analysis has shown that neural network modeling of the processes of recognizing linguistic markers of the categories of sense and absurdity in the context of working with false data is based on NLP [V. Derbentsev et al, 2023]. An important task of the latter is sentiment analysis, which is mostly studied using Deep learning (hereinafter -DL) models.…”
Section: Introduction the Full-scale Invasion Ofmentioning
confidence: 99%
“…Аналіз останніх досліджень і публікацій. Проблематиці математичних методів та інформаційних технологій, а саме: методів теорії нечіткої логіки та індуктивного моделювання, підходів до лінгвістичних термів і формування множин нечітких знань для розв'язання задач вибору й ухвалення рішень у банківській сфері -присвятили за останні роки дослідження такі науковці: B. S. Ahn [1], Ashish K. Srivastava [6], A. Н. Báez [2], М. Р. Баранюк [3; 4], V. Bezkorovainyi [5], S. S. Cho [1], B. H. Debrayan [2], V. Derbentsev [5], A. Hrabariev [3; 4; 5], C. Y. Kim [1], S. Kumar [6], Manish K. Srivastava [6], O. Pomazun [5], M. Silchenko [5], R. Singh [6], А. В. Матвійчук [7], О. П. Мозгаллі [8]. Утім лишається недостатньо дослідженими ситуації, які неможливо розв'язати за допомогою апарату булевої логіки, зокрема, нейромережеві, нечіткі алгоритми, які тотожні великій групі завдань банківської діяльності.…”
unclassified