Deep learning approach to predict optical attenuation in additively manufactured planar waveguides
Keno Pflieger,
Andreas Evertz,
Ludger Overmeyer
Abstract:The booming demand for efficient, scalable optical networks has intensified the exploration of innovative strategies that seamlessly connect large-scale fiber networks with miniaturized photonic components. Within this context, our research introduces a neural network, specifically a convolutional neural network (CNN), as a trailblazing method for approximating the nonlinear attenuation function of centimeter-scale multimode waveguides. Informed by a ray tracing model that simulated many flexographically print… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.