Deep Learning based Arrhythmia Classification with an ECG Acquisition System
Roshan Badrinath*,
Abhay Navada,
Harshith Narahari
et al.
Abstract:One of the issues that the human body faces is arrhythmia, a condition where the human heartbeat is either irregular, too slow or too fast. One of the ways to diagnose arrhythmia is by using ECG signals, the best diagnostic tool for detection of arrhythmia. This paper describes a deep learning approach to check whether signs of arrhythmia, in a given input signal, are present or not. A batch normalized CNN is used to classify the ECG signals based on the different types of arrhythmia. The model has achieved 96… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.