2021
DOI: 10.21203/rs.3.rs-1022596/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Deep Learning-Based Beamforming for Millimeter-Wave Systems Using Parametric ReLU Activation Function

Abstract: Beamforming design is a crucial stage in millimeter-wave systems with massive antenna arrays. We propose a deep learning network for the design of the precoder and combiner in hybrid architectures. The proposed network employs a parametric rectified linear unit (PReLU) activation function which improves model accuracy with almost no complexity cost compared to other functions. The proposed network accepts practical channel estimation input and can be trained to enhance spectral efficiency considering the hardw… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?