2023
DOI: 10.1299/transjsme.22-00325
|View full text |Cite
|
Sign up to set email alerts
|

Deep learning-based bubble detection with automatic training data generation: Application to the PEM water electrolysis

Abstract: Various fields, such as the paper industry, chemical engineering, and renewable energy, are faced with gas-liquid two-phase flows and are being studied by visualization and observation. Although it is necessary to quantitatively evaluate the characteristics of bubbles, there is a limitation in the amount of labor required for detection and measurement by human observation of images. There are no examples for bubbles in polymer electrolyte membrane water electrolysis (PEMWE), where the bubbles in PEMWE have het… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?