2022
DOI: 10.1155/2022/5951418
|View full text |Cite
|
Sign up to set email alerts
|

Deep Learning‐Based Computed Tomography Features in Evaluating Early Screening and Risk Factors for Chronic Obstructive Pulmonary Disease

Abstract: This research aimed to investigate the diagnostic effect of computed tomography (CT) images based on a deep learning double residual convolution neural network (DRCNN) model on chronic obstructive pulmonary disease (COPD) and the related risk factors for COPD. The questionnaire survey was conducted among 980 permanent residents aged ≥ 40 years old. Among them, 84 patients who were diagnosed with COPD and volunteered to participate in the experiment and 25 healthy people were selected as the research subjects, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 27 publications
0
0
0
Order By: Relevance