2023
DOI: 10.3390/diagnostics13071329
|View full text |Cite
|
Sign up to set email alerts
|

Deep-Learning-Based COVID-19 Diagnosis and Implementation in Embedded Edge-Computing Device

Abstract: The rapid spread of coronavirus disease 2019 (COVID-19) has posed enormous challenges to the global public health system. To deal with the COVID-19 pandemic crisis, the more accurate and convenient diagnosis of patients needs to be developed. This paper proposes a deep-learning-based COVID-19 detection method and evaluates its performance on embedded edge-computing devices. By adding an attention module and mixed loss into the original VGG19 model, the method can effectively reduce the parameters of the model … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 53 publications
0
0
0
Order By: Relevance