2023
DOI: 10.29278/azd.1365477
|View full text |Cite
|
Sign up to set email alerts
|

Deep Learning-Based Detection of Defective Fruits in Shelled Hazelnut Fruits

Oğuzhan KIVRAK,
Mustafa Zahid GÜRBÜZ

Abstract: Amaç: Bu çalışmada, fındıktaki kaliteyi artırabilmek amacıyla kabuklu fındıkta kusurlu olanları manuel bir süreç olmaktan çıkartıp otomatik olarak tanımlanması için bir yöntem geliştirilmesi hedeflenmiştir. Çatlak, kırık, delik gibi kusurlu fındıkların derin öğrenme tabanlı bir yapay zeka modeli ile sınıflandırması amaçlanmıştır. Materyal ve Yöntem: Çalışmada kullanılacak veri kaynağı için cep telefonu vasıtasıyla fotoğraf çekilmesi suretiyle veriler kayıt altına alınmıştır. Kayıt altına alınan veriler b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 11 publications
0
1
0
Order By: Relevance
“…In the domain of hazelnut research, studies have predominantly focused on quantifying production yields, 5,6 mapping hazelnut cultivation areas, 7 and exploring methods for detecting defective fruits. 8,9 In addition to the contextual analysis, the previous studies were further evaluated based on the machine learning (ML) models employed and the corresponding accuracy rates of the proposed models. Momeny et al 10 proposed an AI (Artificial Intelligence) model that utilizes a combination of image processing techniques and a convolutional neural network (CNN) to classify cherry fruit based on its appearance.…”
Section: Related Workmentioning
confidence: 99%
“…In the domain of hazelnut research, studies have predominantly focused on quantifying production yields, 5,6 mapping hazelnut cultivation areas, 7 and exploring methods for detecting defective fruits. 8,9 In addition to the contextual analysis, the previous studies were further evaluated based on the machine learning (ML) models employed and the corresponding accuracy rates of the proposed models. Momeny et al 10 proposed an AI (Artificial Intelligence) model that utilizes a combination of image processing techniques and a convolutional neural network (CNN) to classify cherry fruit based on its appearance.…”
Section: Related Workmentioning
confidence: 99%