“…The learning-enhanced cell optical image-analysis model is capable of acquiring the texture details from low-level source images and achieve higher resolution improvement for the label-free cell optical-imaging techniques ( Chen et al, 2016 ; Lee et al, 2020 ; Ullah et al, 2021 ; Ullah et al, 2022 ). The deep-learning pipeline of cell optical microscopy imaging can extract complex data representation in a hierarchical way, which is helpful to find hidden cell structures from the microscope images, such as the size of a single cell, the number of cells in a given area, the thickness of the cell wall, the spatial distribution between cells, and subcellular components and their densities ( Boslaugh and Watters, 2008 ; Donovan-Maiye et al, 2018 ; Falk et al, 2019 ; Manifold et al, 2019 ; Rezatofighi et al, 2019 ; Yao et al, 2019 ; Zhang et al, 2019 ; Lee et al, 2020 ; Voronin et al, 2020 ; Zhang et al, 2020 ; Chen et al, 2021a ; Gomariz et al, 2021 ; Manifold et al, 2021 ; Wang et al, 2022b ; Islam et al, 2022 ; Kim et al, 2022 ; Melanthota et al, 2022 ; Rahman et al, 2022 ; Ullah et al, 2022 ; Witmer and Bhanu, 2022 ).…”