Aβ plaques are a main feature of Alzheimer’s disease, and pathological alterations especially in their microenvironment have recently come into focus. However, a holistic imaging approach unveiling these changes and their biochemical nature is still lacking. In this context, we leverage confocal Raman microscopy as unbiased tool for non-destructive, label-free differentiation of progressive biomolecular changes in the Aβ plaque microenvironment in brain tissue of a murine model of cerebral amyloidosis. By developing a detailed approach, overcoming many challenges of chemical imaging, we identify spatially-resolved molecular signatures of disease-associated structures. Specifically, our study reveals nuclear condensation, indicating cellular degeneration, and increased levels of cytochrome c, showing mitochondrial dysfunction, in the vicinity of Aβ plaques. Further, we observe severe accumulation of especially unsaturated lipids. Thus, our study contributes to a comprehensive understanding of disease progression in the Aβ plaque microenvironment, underscoring the prospective of Raman imaging in neurodegenerative disorder research.