In the contemporary world, emotion detection of humans is procuring huge scope in extensive dimensions such as bio-metric security, HCI (human–computer interaction), etc. Such emotions could be detected from various means, such as information integration from facial expressions, gestures, speech, etc. Though such physical depictions contribute to emotion detection, EEG (electroencephalogram) signals have gained significant focus in emotion detection due to their sensitivity to alterations in emotional states. Hence, such signals could explore significant emotional state features. However, manual detection from EEG signals is a time-consuming process. With the evolution of artificial intelligence, researchers have attempted to use different data mining algorithms for emotion detection from EEG signals. Nevertheless, they have shown ineffective accuracy. To resolve this, the present study proposes a DNA-RCNN (Deep Normalized Attention-based Residual Convolutional Neural Network) to extract the appropriate features based on the discriminative representation of features. The proposed NN also explores alluring features with the proposed attention modules leading to consistent performance. Finally, classification is performed by the proposed M-RF (modified-random forest) with an empirical loss function. In this process, the learning weights on the data subset alleviate loss amongst the predicted value and ground truth, which assists in precise classification. Performance and comparative analysis are considered to explore the better performance of the proposed system in detecting emotions from EEG signals that confirms its effectiveness.