Deep learning-based segmentation for high-dose-rate brachytherapy in cervical cancer using 3D Prompt-ResUNet
Xian Xue,
Lining Sun,
Dazhu Liang
et al.
Abstract:Objective. To develop and evaluate a 3D Prompt-ResUNet module that utilized the prompt-based model combined with 3D nnUNet for rapid and consistent autosegmentation of high-risk clinical target volume and organ at risk in high-dose-rate brachytherapy for cervical cancer patients. 
Approach. We used 73 computed tomography (CT) and 62 magnetic resonance imaging (MRI) scans from 135 (103 for training, 16 for validation, and 16 for testing) cervical cancer patients across two hospitals for HRCTV and OAR … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.