2022
DOI: 10.3233/apc220006
|View full text |Cite
|
Sign up to set email alerts
|

Deep Learning-Based Solar Activity Prediction Using Sunspot Number and Solar Radio Flux

Abstract: Nowadays, solar spectral irradiances are modelled by solar activity indices, which are used to identify the solar energy absorbed in the environment. This paper devises the Deep LSTM model for predicting solar activity using Sunspot Number (SSN) and Solar Radio Flux (SRF). The processing steps involved in the solar activity prediction are technical indicator extraction and solar activity prediction. In this paper, the solar indices are considered as an input of solar activity prediction, which is acquired from… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?