2023
DOI: 10.1016/j.iswa.2023.200222
|View full text |Cite
|
Sign up to set email alerts
|

Deep learning detection of types of water-bodies using optical variables and ensembling

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 11 publications
(7 citation statements)
references
References 46 publications
0
5
0
2
Order By: Relevance
“…Knaeps et al [148] compare algorithms across different water quality classes, revealing performance variations based on water quality class. Nasir et al [149] investigate classifier performance across water classes, noting suboptimal performance for the stream class. The aforementioned studies collectively validate the hypothesized factors that have the potential to influence predictive models in the assessment of water quality based on satellite data.…”
Section: Factors Influencing Model Performance In Satellite-based Wat...mentioning
confidence: 99%
“…Knaeps et al [148] compare algorithms across different water quality classes, revealing performance variations based on water quality class. Nasir et al [149] investigate classifier performance across water classes, noting suboptimal performance for the stream class. The aforementioned studies collectively validate the hypothesized factors that have the potential to influence predictive models in the assessment of water quality based on satellite data.…”
Section: Factors Influencing Model Performance In Satellite-based Wat...mentioning
confidence: 99%
“…A seleção de um índice de água é de crucial importância para a extração de corpos hídricos por sensoriamento remoto. Neste trabalho, além das polarizações VV e VH, o corpo hídrico também foi extraído usando o índice Sentinel-1 Dual-Polarized Water Index (SDWI) (Nasir et al 2023). Dedicado às bandas duplamente polarizadas do Sentinel-1, esse índice pode efetivamente distinguir a diferença entre água e outros objetos em bandas de onda duplamente polarizadas e pode aprimorar as informações dos corpos d'água de superfície e eliminar perturbações de outros tipos de superfície, como vegetação e solo.…”
Section: Dual-polarized Water Index (Sdwi)unclassified
“…Os métodos atuais de extração de informações sobre água incluem os métodos de limite (Guo et al, 2022), aprendizado de máquina (Rajendiran;Kumar, 2022) e aprendizado profundo (Li et al, 2021), entre outros. O aprendizado profundo é um método popular no processamento de imagens que vem sendo muito usado nos últimos anos (Nasir et al, 2023). As Redes Neurais Artificais (RNAs) têm sido usadas na classificação de cenas (Tamiru;Dinka, 2021), e ainda são utilizados a segmentação semântica (Pinheiro, 2023) e a detecção de objetos (Guo et al, 2022).…”
Section: Introductionunclassified
“…Chlorophyll-a detection algorithms using combined machine learning and remote sensing techniques are new advanced tools used to assess the presence and concentration of chlorophyll-a in water bodies [24][25][26]. Machine learning consists of training a model with previously labeled sample data, which allows the algorithm to learn to recognize patterns and make accurate predictions about chlorophyll-a concentration in new images [27][28][29]. The combination of machine learning and remote sensing techniques allows for improved accuracy of chlorophyll-a detection compared to traditional approaches [30][31][32][33].…”
Section: Introductionmentioning
confidence: 99%