2024
DOI: 10.2174/0115734110287027240427064546
|View full text |Cite
|
Sign up to set email alerts
|

Deep Learning-enhanced Hyperspectral Imaging for the Rapid Identification and Classification of Foodborne Pathogens

Hanjing Ge

Abstract: Background: Bacterial cellulose (BC) is a versatile biomaterial with numerous applications, and the identification of bacterial strains that produce it is of great importance. This study explores the effectiveness of a Stacked Autoencoder (SAE)-based deep learning method for the classification of bacterial cellulose-producing bacteria. Objective: The primary objective of this research is to assess the potential of SAE-based classification models in accurately identifying and classifying bacterial cellulose-p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?