2023
DOI: 10.48550/arxiv.2301.02378
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Deep learning for full-field ultrasonic characterization

Abstract: This study takes advantage of recent advances in machine learning to establish a physics-based data analytic platform for distributed reconstruction of mechanical properties in layered components from full waveform data. In this vein, two logics, namely the direct inversion and physics-informed neural networks (PINNs), are explored. The direct inversion entails three steps: (i) spectral denoising and differentiation of the full-field data, (ii) building appropriate neural maps to approximate the profile of unk… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 43 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?