2024
DOI: 10.3390/jimaging10100246
|View full text |Cite
|
Sign up to set email alerts
|

Deep Learning for Generating Time-of-Flight Camera Artifacts

Tobias Müller,
Tobias Schmähling,
Stefan Elser
et al.

Abstract: Time-of-Flight (ToF) cameras are subject to high levels of noise and errors due to Multi-Path-Interference (MPI). To correct these errors, algorithms and neuronal networks require training data. However, the limited availability of real data has led to the use of physically simulated data, which often involves simplifications and computational constraints. The simulation of such sensors is an essential building block for hardware design and application development. Therefore, the simulation data must capture t… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?