Early diagnosis of urological diseases is often difficult due to the lack of specific biomarkers. More powerful and less invasive biomarkers that can be used simultaneously to identify urological diseases could improve patient outcomes. The aim of this study was to evaluate a urological disease-specific scoring system established with a machine learning (ML) approach using Ig N-glycan signatures. Immunoglobulin Nglycan signatures were analyzed by capillary electrophoresis from 1312 serum subjects with hormone-sensitive prostate cancer (n = 234), castration-resistant prostate cancer (n = 94), renal cell carcinoma (n = 100), upper urinary tract urothelial cancer (n = 105), bladder cancer (n = 176), germ cell tumors (n = 73), benign prostatic hyperplasia (n = 95), urosepsis (n = 145), and urinary tract infection (n = 21) as well as healthy volunteers (n = 269). Immunoglobulin N-glycan signature data were used in a supervised-ML model to establish a scoring system that gave the probability of the This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.