Retinal disorders, including diabetic retinopathy and macular degeneration due to aging, can lead to preventable blindness in diabetics. Vision loss caused by diseases that affect the retinal fundus cannot be reversed if not diagnosed and treated on time. This paper employs deep-learned feature extraction with ensemble learning models to improve the multi-disease classification of fundus images. This research presents a novel approach to the multi-classification of fundus images, utilizing deep-learned feature extraction techniques and ensemble learning to diagnose retinal disorders and diagnosing eye illnesses involving feature extraction, classification, and preprocessing of fundus images. The study involves analysis of deep learning and implementation of image processing. The ensemble learning classifiers have used retinal photos to increase the classification accuracy. The results demonstrate improved accuracy in diagnosing retinal disorders using DL feature extraction and ensemble learning models. The study achieved an overall accuracy of 87.2%, which is a significant improvement over the previous study. The deep learning models utilized in the study, including NASNetMobile, InceptionResNetV4, VGG16, and Xception, were effective in extracting relevant features from the Fundus images. The average F1-score for Extra Tree was 99%, while for Histogram Gradient Boosting and Random Forest, it was 98.8% and 98.4%, respectively. The results show that all three algorithms are suitable for the classification task. The combination of DenseNet feature extraction technique and RF, ET, and HG classifiers outperforms other techniques and classifiers. This indicates that using DenseNet for feature extraction can effectively enhance the performance of classifiers in the task of image classification.