SPE Reservoir Simulation Conference 2021
DOI: 10.2118/203997-ms
|View full text |Cite
|
Sign up to set email alerts
|

Deep Learning for Latent Space Data Assimilation LSDA in Subsurface Flow Systems

Abstract: We present a deep learning architecture for efficient reduced-order implementation of ensemble data assimilation. Specifically, deep learning is used to improve two important aspects of data assimilation workflows: (i) low-rank representation of complex reservoir property distributions for geologically consistent feature-based model updating, and (ii) efficient prediction of the statistical information that are required for model updating. The proposed method uses deep convolutional autoencoders to nonlinearly… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 43 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?