2023
DOI: 10.1002/ima.22965
|View full text |Cite
|
Sign up to set email alerts
|

Deep learning for COVID‐19 contamination analysis and prediction using ECG images on Raspberry Pi 4

Lotfi Mhamdi,
Oussama Dammak,
François Cottin
et al.

Abstract: This paper's primary goal is to diagnose COVID‐19 contamination based on the artificial intelligence approach automatically. We used convolutional neural network deep learning algorithm for analyzing the ECG images to detect cardiac abnormalities, consequent of the contamination by the SARS‐CoV‐2 virus, responsible for the COVID‐19 epidemic. We designed, trained, and evaluated the performance of two deep learning models (MobileNetV2 and VGG16) in detecting and distinguishing between two different classes (heal… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 60 publications
0
0
0
Order By: Relevance