2016
DOI: 10.1016/j.neucom.2015.09.116
|View full text |Cite
|
Sign up to set email alerts
|

Deep learning for visual understanding: A review

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
1,053
0
27

Year Published

2017
2017
2022
2022

Publication Types

Select...
4
4

Relationship

1
7

Authors

Journals

citations
Cited by 2,021 publications
(1,081 citation statements)
references
References 123 publications
1
1,053
0
27
Order By: Relevance
“…The deep reinforcement learning model extends the cognitive ability of mobile robots for more complicated indoor environments in an efficient onlinelearning process continuously. As a result, this work extends a previous systematic review [7] by taking into account a different educational level. Moreover, the current systematic review expands the previous one by paying attention to the learning theories support for practical activities with robots.…”
Section: Resultssupporting
confidence: 54%
See 1 more Smart Citation
“…The deep reinforcement learning model extends the cognitive ability of mobile robots for more complicated indoor environments in an efficient onlinelearning process continuously. As a result, this work extends a previous systematic review [7] by taking into account a different educational level. Moreover, the current systematic review expands the previous one by paying attention to the learning theories support for practical activities with robots.…”
Section: Resultssupporting
confidence: 54%
“…The feature learning algorithms, especially convolutional neural networks, have been widely used in many areas, i.e., computer vision and speech recognition [6,7]. However, it is seldom used in mobile visual navigation.…”
Section: Discussionmentioning
confidence: 99%
“…In recent years, deep learning methods have attracted significant attention [11] and have achieved revolutionary successes in various applications [12,24]. Two important structures for deep learning are CNN and RNN.…”
Section: Usage Of Cnn-rnn Frameworkmentioning
confidence: 99%
“…Los métodos desarrollados para la clasificación se pueden agrupar en dos categorías: los modelos basados en la generación manual de características [24,25,32], y los modelos de aprendizaje automático de características usando técnicas de aprendizaje profundo (DL, Deep Learning) [8,11,[33][34][35][36][37][38].…”
Section: Clasificación De Peatones Sobre Imágenes En El Infrarrojo Leunclassified
“…Por otra parte, debido al reciente éxito que han presentado las técnicas de aprendizaje profundo (Deep Learning) [10,11], el principal objetivo de este trabajo es poner en marcha un método para la detección de peatones en la noche usando información visual en el infrarrojo lejano y las redes neuronales convolucionales, específicamente las arquitecturas del tipo Faster R-CNN [9,[11][12][13][14][15] para obtener un sistema competitivo que genere resultados de vanguardia comparables a los existentes en los trabajos previos. Por lo tanto, se presenta una nueva arquitectura Faster R-CNN a múlti-ples escalas, la cual es evaluada bajo los conjuntos de prueba de las bases datos CVC-09 [16] y LSIFIR [17].…”
Section: Introductionunclassified