2024
DOI: 10.4018/joeuc.336275
|View full text |Cite
|
Sign up to set email alerts
|

Deep Learning in Carbon Neutrality Forecasting

Jiwei Ran,
Ganchang Zou,
Ying Niu

Abstract: With the growing urgency of global climate change, carbon neutrality, as a strategy to reduce greenhouse gas emissions into the atmosphere, is increasingly seen as a critical solution. However, current forecasting models still face significant challenges and limitations in accurately and effectively predicting carbon emissions and their associated effects. These challenges largely stem from the complexity of carbon emission data and the interplay of anthropogenic and natural factors. To overcome these obstacle… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?