2022
DOI: 10.1155/2022/5239493
|View full text |Cite
|
Sign up to set email alerts
|

Deep Learning Model for Stock Excess Return Prediction Based on Nonlinear Random Matrix and Esg Factor

Abstract: Aiming at the problem that the traditional model has low accuracy in describing stock excess return, in order to further analyze the change law of stock excess, based on the nonlinear random matrix and esg factor theory, the traditional learning model is analyzed, and the corresponding optimized deep learning model is obtained by introducing the single ring theorem and statistical data. Through the analysis and research of related indexes, the change rules of different indexes are obtained, and the optimizatio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?