BackgroundThis study aimed at constructing a nomogram to predict axillary lymph node metastasis (ALNM) based on axillary ultrasound and tumor clinicopathological features.MethodsA retrospective analysis of 281 patients with pathologically confirmed breast cancer was performed between January 2015 and March 2018. All patients were randomly divided into a training cohort (n = 197) and a validation cohort (n = 84). Univariate and multivariable logistic regression analyses were performed to identify the clinically important predictors of ALNM when developin1 g the nomogram. The area under the curve (AUC), calibration plots, and decision curve analysis (DCA) were used to assess the discrimination, calibration, and clinical utility of the nomogram.ResultsIn univariate and multivariate analyses, lymphovascular invasion (LVI), axillary lymph node (ALN) cortex thickness, and an obliterated ALN fatty hilum were identified as independent predictors and integrated to develop a nomogram for predicting ALNM. The nomogram showed favorable sensitivity for ALNM with AUCs of 0.87 (95% confidence interval (CI), 0.81–0.92) and 0.84 (95% CI, 0.73–0.92) in the training and validation cohorts, respectively. The calibration plots of the nomogram showed good agreement between the nomogram prediction and actual ALNM diagnosis (P > 0.05). Decision curve analysis (DCA) revealed the net benefit of the nomogram.ConclusionsThis study developed a nomogram based on three daily available clinical parameters, with good accuracy and clinical utility, which may help the radiologist in decision-making for ultrasound-guided fine needle aspiration cytology/biopsy (US-FNAC/B) according to the nomogram score.