Purpose. To develop an automated method based on machine learning for accurate detection of features of a damaged building on digital imagery. Methodology. This article presents an approach that employs a combination of unsupervised machine learning techniques, specifically Principal Component Analysis (PCA), K-means clustering, and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), to identify building damage resulting from military conflicts. The PCA method is utilized to identify principal vectors representing the directions of maximum variance in the data. Subsequently, the K-means method is applied to cluster the feature vector space, with the predefined number of clusters reflecting the number of principal vectors. Each cluster represents a group of similar blocks of image differences, which helps to identify significant features associated with fractures. Finally, the DBSCAN method is employed to identify areas where points with similar characteristics are located. Subsequently, a binary fracture mask is generated, with pixels exceeding the threshold being identified as fractures. Findings. The introduced methodology attains an accuracy rate of 98.13 %, surpassing the performance of conventional methods such as DBSCAN, PCA, and K-means. Furthermore, the method exhibits a recall of 82.38 %, signifying its ability to effectively detect a substantial proportion of positive examples. Precision of 58.54 % underscores the methodology’s capability to minimize false positives. The F1 Score of 70.90 % demonstrates a well-balanced performance between precision and recall. Originality. DBSCAN, PCA and K-means methods have been further developed in the context of automated detection of building destruction in aerospace images. This allows us to significantly increase the accuracy and efficiency of monitoring territories, including those affected by the consequences of military aggression. Practical value. The results obtained can be used to improve automated monitoring systems for urban development and can also serve as the basis for the development of effective strategies for the restoration and reconstruction of damaged infrastructure.