2020
DOI: 10.1007/978-3-030-59277-6_21
|View full text |Cite
|
Sign up to set email alerts
|

Deep LSTM Recurrent Neural Network for Anxiety Classification from EEG in Adolescents with Autism

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
3

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 14 publications
(5 citation statements)
references
References 41 publications
0
2
0
3
Order By: Relevance
“…Electroencephalograms (EEG) has been used extensively to study the internal brain states by recording the electrical activity of brain waves for predicting diseases such as Parkinson's [16]. Even though using EEG to study Autism could have contradictions based on the experimental conditions during EEG registration between subjects, age differences, and diversity of subjects, the abnormal EEG laterization in subjects with ASD can be leveraged to build AI models to predict traits of autism [17]. [20].…”
Section: B Artificially Intelligent Methods In Behavioral Healthmentioning
confidence: 99%
“…Electroencephalograms (EEG) has been used extensively to study the internal brain states by recording the electrical activity of brain waves for predicting diseases such as Parkinson's [16]. Even though using EEG to study Autism could have contradictions based on the experimental conditions during EEG registration between subjects, age differences, and diversity of subjects, the abnormal EEG laterization in subjects with ASD can be leveraged to build AI models to predict traits of autism [17]. [20].…”
Section: B Artificially Intelligent Methods In Behavioral Healthmentioning
confidence: 99%
“…In addition, this allows us to extract data from each interval, and enables us to place more importance on small differences in the data. Further, other studies in the past have shown that RNNs have promise in the task of mental disorder prediction using EEG data 42,43 . In addition, attention mechanisms are often used in conjunction with RNNs 44 .…”
Section: Gated Recurrent Unit (Gru)mentioning
confidence: 99%
“…Pancerz, Paja, and Gomula (2016) Usar dados apropriados para construir classificadores mais simples e precisos, usando IA, na detecção do TEA. Penchina, Sundaresan, Cheong, and Martel (2020) Propor um classificador de aprendizagem profunda no tratamento de ansiedade em pessoas com TEA. Rabbi, Hasan, Champa, and Zaman (2021) Criar um modelo de rede neural convolucional para detecção em estágio inicial do TEA Saranya and Anandan (2021) Propor uma técnica de aprendizagem de máquina no prognóstico do TEA.…”
Section: Critérios De Seleção De Estudounclassified
“…Em Shahamiri and Thabtah (2020), foi proposto um novo sistema de triagem de autismo que substitui as funções convencionais de pontuação em métodos de triagem clássicos usando Redes Neurais Convolucionais (CNN). Em Penchina et al (2020), foi proposto classificador de aprendizagem profunda usando Rede Neural Recorrente de Curto Prazo (LSTM RNN), capaz de identificar estados de ansiedade em pacientes adolescentes com autismo. Em Bowrin and Iqbal (2020), avaliou-se a eficácia de uma intervenção que incorpora tecnologias de agentes conversacionais de Inteligência Artificial e técnicas de terapia de ativação comportamental voltadas para pessoas com autismo.…”
Section: Técnicas De Detecção E Intervençãounclassified