2022
DOI: 10.3389/fddsv.2022.829043
|View full text |Cite
|
Sign up to set email alerts
|

Deep Machine Learning for Computer-Aided Drug Design

Abstract: In recent years, deep learning (DL) has led to new scientific developments with immediate implications for computer-aided drug design (CADD). These include advances in both small molecular and macromolecular modeling, as highlighted herein. Going forward, these developments also challenge CADD in different ways and require further progress to fully realize their potential for drug discovery. For CADD, these are exciting times and at the very least, the dynamics of the discipline will further increase.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 16 publications
(6 citation statements)
references
References 40 publications
0
5
0
1
Order By: Relevance
“…Otro ejemplo notable de los modelos generativos se observa en la creación de obras literarias, en donde se han generado desde poemas hasta libros de campos expertos del área de investigación (Petsko, 2019). En el diseño de fármacos, los modelos generativos se utilizan principalmente para diseñar nuevos compuestos químicos (Bajorath, 2022). La figura 4 resume algunas arquitecturas de DL empleadas en el diseño de novo, que son: Autocodificadores Variacionales (VAE, del inglés, Variational Autoencoders) (4a), Redes Generativas Antagónicas (GAN, Generative Adversarial Networks) (4b) y Redes Neuronales Recurrentes (RNN, Recurrent Neural Network) (4c).…”
Section: Diseño De Novo De Nuevos Compuestosunclassified
“…Otro ejemplo notable de los modelos generativos se observa en la creación de obras literarias, en donde se han generado desde poemas hasta libros de campos expertos del área de investigación (Petsko, 2019). En el diseño de fármacos, los modelos generativos se utilizan principalmente para diseñar nuevos compuestos químicos (Bajorath, 2022). La figura 4 resume algunas arquitecturas de DL empleadas en el diseño de novo, que son: Autocodificadores Variacionales (VAE, del inglés, Variational Autoencoders) (4a), Redes Generativas Antagónicas (GAN, Generative Adversarial Networks) (4b) y Redes Neuronales Recurrentes (RNN, Recurrent Neural Network) (4c).…”
Section: Diseño De Novo De Nuevos Compuestosunclassified
“…SBDD has reached notable maturity over the past decades, especially structure-based virtual screening, despite its intrinsic limitations. [10] In recent years, DL has been used in attempts to improve the performance of SBDD methods further. Perhaps the most well-known example of this is the usage of DL for protein structure prediction.…”
Section: Opportunities In Structure-based Drug Designmentioning
confidence: 99%
“…[8] Other notable applications of DL are predictions of chemical reactions [9], synthesis automation and de novo design. [10] The goal of the review is to discuss recent progress on selected concepts, resources, methodologies, and applications of CADD. Because of the broad scope of CADD, this manuscript is not meant to be a comprehensive review of the subject.…”
Section: Introductionmentioning
confidence: 99%
“…Among them, the structure-based approach, also known as the structure-based drug design (SBDD), offers several advantages, including rapid target identification/validation/lead identification, and efficient lead optimization, by focusing on drug-binding sites ( Anderson, 2003 ; Kalyaanamoorthy and Chen, 2011 ). Moreover, by integrating computer-aided drug design techniques such as molecular docking-based virtual screening ( Maia et al, 2020 ), molecular dynamics simulations ( De Vivo et al, 2016 ), and machine learning ( Bajorath, 2022 ), the SBDD workflow can be further accelerated ( Sabe et al, 2021 ). Including computational tools, the specific processes and techniques requested in each step of the SBDD workflow are also described in Figure 1 .…”
Section: Introductionmentioning
confidence: 99%