Objectives
To assess the impact of the age of resin-based composite (RBC) restorations used for deep margin elevation (DME) on the marginal quality and fracture resistance of inlays.
Materials and methods
Permanent human molars with direct RBC restorations, involving the mesial, occlusal, and distal surface (MOD), were allocated to four groups (each n = 12). Half of the teeth underwent thermomechanical loading including 240,000 occlusal load cycles and 534 thermal cycles (TML, 5 °C/55 °C; 49 N, 1.7 Hz). With RBC left in one proximal box as DME, all teeth received MOD inlays, made from lithium disilicate (LDS) or a polymer-infiltrated ceramic network material (PICN). The restored teeth underwent TML including 1.2 million occlusal cyclic loadings and 2673 thermal cycles. The marginal quality was assessed at baseline and after both runs of TML. Load-to-fracture tests were performed. The statistical analysis comprised multiple linear regressions (α = 0.05).
Results
Simulated aging of RBC restorations had no significant effect on the marginal quality at the interface between the RBC and the tooth and the RBC and the inlay (p ≥ 0.247). Across time points, higher percentages of non-continuous margin were observed between the inlay and the tooth than between the tooth and the RBC (p ≤ 0.039). The age of the DME did not significantly affect the fracture resistance (p ≥ 0.052).
Conclusions
Artificial aging of RBC restorations used for DME had no detrimental effect on the marginal quality and fracture resistance of LDS and PICN inlays.
Clinical relevance
This laboratory study suggests that—in select cases—intact, direct RBC restorations not placed immediately before the delivery of an indirect restoration may be used for DME.