Abstract:Constrained low-rank matrix approximations have been known for decades as powerful linear dimensionality reduction techniques to be able to extract the information contained in large data sets in a relevant way. However, such low-rank approaches are unable to mine complex, interleaved features that underlie hierarchical semantics. Recently, deep matrix factorization (deep MF) was introduced to deal with the extraction of several layers of features and has been shown to reach outstanding performances on unsuper… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.