2023
DOI: 10.1101/2023.07.17.549430
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Deep mutational scanning of whole SARS-CoV-2 spike in an inverted infection system

Abstract: In order to investigate SARS-CoV-2 mutations and their impact on immune evasion and infectivity, we developed a Deep Mutational Scanning (DMS) platform utilizing an inverted infection assay to measure spike expression, ACE2 affinity, and viral infectivity in human cells. Surprisingly, our analysis reveals that spike protein expression, rather than ACE2 affinity, is the primary factor affecting viral infectivity and correlated with SARS-CoV-2 evolution. Notably, within the N-terminal domain (NTD), spike express… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 51 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?