“…There is a special place for dynamical systems [1], as well as for the identification of dynamical systems [2], in assessing physical phenomena in the realm of experimental science. Although many methods are used to model, simulate, and solve dynamical systems [3] and to discuss their stability [4], neural network-based techniques [5,6] to approximate the solution of DEs occurring in various systems [7] have, however, garnered a reputation in recent years. Other analytical methods for ordinary DEs [8] and partial DEs [9], semi-analytical methods [10], including the Variational Iteration Method (VIM) by using the Laplace Transform [11], and numerical methods have their own shortcomings in terms of convergence, precision, processing time, and computational complexity.…”