More than 90% of marine dissolved organic matter (DOM) is biologically recalcitrant. This recalcitrance has been attributed to intrinsically refractory molecules or to low concentrations of molecules, but their relative contributions are a long-standing debate. Characterizing the molecular composition of marine DOM and its bioavailability is critical for understanding this uncertainty. Here, using different sorbents, DOM was solidphase extracted from coastal, epipelagic, and deep-sea water samples for molecular characterization and was subjected to a 180day incubation. 1 H nuclear magnetic resonance spectroscopy and ultra-high-resolution mass spectrometry (UHRMS) analyses revealed that all of the DOM extracts contained refractory carboxyl-rich alicyclic molecules, accompanied with minor biolabile components, for example, carbohydrates. Furthermore, dissolved organic carbon concentration analysis showed that a considerable fraction of the extracted DOM (86−95%) amended in the three seawater samples resisted microbial decomposition throughout the 180-day heterotrophic incubation, even when concentrated threefold. UHRMS analysis revealed that DOM composition remained mostly invariant in the 180-day deep-sea incubations. These results underlined that the dilution and intrinsic recalcitrance hypotheses are not mutually exclusive in explaining the recalcitrance of oceanic DOM, and that the intrinsically refractory DOM likely has a relatively high contribution to the solid-phase extractable DOM in the ocean.