International audienceTwo series of electrochemical catalysts were prepared from sputtered Pt thin films onto two kinds of electrolyte membranes, 8 mol% Y2O3-stabilized ZrO2 (YSZ), an O2− conducting oxide and Na3Zr2Si2PO12 (NASICON), a Na+ one; respectively. The thickness of the Pt films varied from 8 to 120 nm. Therefore, the Pt loading was extremely low. The catalytic activity of Pt/YSZ and Pt/NASICON systems has been investigated between 200 and 500 °C for propane and propene, respectively. In spite of the low Pt loading, the Pt/YSZ electrochemical catalysts exhibited high activity for propane combustion. Furthermore, the catalytic activity can be in-situ controlled by applying electrical polarisation with high Faradaic efficiency (103). The catalytic rate of propene deep oxidation on Pt/NASICON electrochemical catalyst was found to be limited by the number of active sites, which is low on very thin Pt films. Moreover, initial anodic polarisation indicate that Na+ ions are already present on the top surface of Pt, probably proceeding from the preliminary stabilisation treatment of Pt in the reactive mixture. Nevertheless, polarisation allows the tuning of the catalytic activity of the electrochemical catalysts for propene oxidation. Finally, for both kinds of electrochemical catalysts, our results have evidenced that the measurement of the open-circuit voltage during catalytic process can be an indicator of the hydrocarbon conversion