2021
DOI: 10.3906/elk-2011-144
|View full text |Cite
|
Sign up to set email alerts
|

Deep Q-network-based noise suppression for robust speech recognition

Tae-Jun PARK,
Joon-Hyuk CHANG

Abstract: This study develops the deep Q-network (DQN)-based noise suppression for robust speech recognition purposes under ambient noise. We thus design a reinforcement algorithm that combines DQN training with a deep neural networks (DNN) to let reinforcement learning (RL) work for complex and high dimensional environments like speech recognition. For this, we elaborate on the DQN training to choose the best action that is the quantized noise suppression gain by the observation of noisy speech signal with the rewards … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?