2021
DOI: 10.31590/ejosat.957216
|View full text |Cite
|
Sign up to set email alerts
|

Deep Reinforcement Learning Based Controller Design for Model of The Vertical Take off and Landing System

Abstract: In this study, the Deep Deterministic Policy Gradient (DDPG) algorithm, which consists of a combination of artificial neural networks and reinforcement learning, was applied to the Vertical Takeoff and Landing (VTOL) system model in order to control the pitch angle. This algorithm was selected because conventional control algorithms such as Proportional-Integral-Derivative (PID) controllers which cannot always generate a suitable control signal eliminating the disturbance and unwanted environment effects on th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
2
1

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 15 publications
0
1
0
Order By: Relevance
“…For feature extraction, deep learning uses network architectures, such as convolutional neural networks (CNNs) (Ağralı et al;Akosman, Öktem, Moral, & Kılıç, 2021;Çaylı, Kılıç, Onan, & Wang, 2022;Keskin, Moral, Kılıç, & Onan, 2021;B. Kilic, Dogan, Kilic, & Kahyaoglu, 2022;Sayraci, Agrali, & Kilic, 2023;Şen et al, 2022;Yüzer, Doğan, Kılıç, & Şen, 2022), reinforcement learning (Agrali, Soydemir, Gökçen, & Sahin, 2021), and recurrent neural networks (RNNs) (Aydın, Çaylı, Kılıç, & Onan, 2022;Fetiler, Caylı, Moral, Kılıc, & Onan, 2021;Gölcez, Kiliç, & Şen, 2019;Keskin, Çaylı, Moral, Kılıc, & Onan, 2021;Kılıc, 2021;Volkan Kılıç;Kökten & Kılıç, 2021;Mercan, Doğan, & Kılıç, 2020;Mercan & Kılıç, 2021;Palaz, Doğan, & Kılıç, 2021). Among these architectures, CNN offers remarkable performance on ischemic stroke disease segmentation.…”
Section: Introductionmentioning
confidence: 99%
“…For feature extraction, deep learning uses network architectures, such as convolutional neural networks (CNNs) (Ağralı et al;Akosman, Öktem, Moral, & Kılıç, 2021;Çaylı, Kılıç, Onan, & Wang, 2022;Keskin, Moral, Kılıç, & Onan, 2021;B. Kilic, Dogan, Kilic, & Kahyaoglu, 2022;Sayraci, Agrali, & Kilic, 2023;Şen et al, 2022;Yüzer, Doğan, Kılıç, & Şen, 2022), reinforcement learning (Agrali, Soydemir, Gökçen, & Sahin, 2021), and recurrent neural networks (RNNs) (Aydın, Çaylı, Kılıç, & Onan, 2022;Fetiler, Caylı, Moral, Kılıc, & Onan, 2021;Gölcez, Kiliç, & Şen, 2019;Keskin, Çaylı, Moral, Kılıc, & Onan, 2021;Kılıc, 2021;Volkan Kılıç;Kökten & Kılıç, 2021;Mercan, Doğan, & Kılıç, 2020;Mercan & Kılıç, 2021;Palaz, Doğan, & Kılıç, 2021). Among these architectures, CNN offers remarkable performance on ischemic stroke disease segmentation.…”
Section: Introductionmentioning
confidence: 99%